833 research outputs found

    A survey of interstellar HI from L alpha absorption measurements 2

    Get PDF
    The Copernicus satellite surveyed the spectral region near L alpha to obtain column densities of interstellar HI toward 100 stars. The distance to 10 stars exceeds 2 kpc and 34 stars lie beyond 1 kpc. Stars with color excess E(B-V) up to 0.5 mag are observed. The value of the mean ratio of total neutral hydrogen to color excess was found to equal 5.8 x 10 to the 21st power atoms per (sq cm x mag). For stars with accurate E(B-V), the deviations from this mean are generally less than a factor of 1.5. A notable exception is the dark cloud star, rho Oph. A reduction in visual reddening efficiency for the grains that are larger than normal in the rho Oph dark cloud probably explains this result. The conversion of atomic hydrogen into molecular form in dense clouds was observed in the gas to E(B-V) correlation plots. The best estimate for the mean total gas density for clouds and the intercloud medium, as a whole, in the solar neighborhood and in the plane of the galaxy is 1.15 atoms per cu. cm; those for the atomic gas and molecular gas alone are 0.86 atoms per cu cm and 0.143 molecules per cu cm respectively. For the intercloud medium, where molecular hydrogen is a negligible fraction of the total gas, atomic gas density was found to equal 0.16 atoms per cu cm with a Gaussian scale height perpendicular to the plane of about 350 pc, as derived from high latitude stars

    Effective area calibration of the reflection grating spectrometers of XMM-Newton. II. X-ray spectroscopy of DA white dwarfs

    Full text link
    White dwarf spectra have been widely used as a calibration source for X-ray and EUV instruments. The in-flight effective area calibration of the reflection grating spectrometers (RGS) of XMM-Newton depend upon the availability of reliable calibration sources. We investigate how well these white dwarf spectra can be used as standard candles at the lowest X-ray energies in order to gauge the absolute effective area scale of X-ray instruments. We calculate a grid of model atmospheres for Sirius B and HZ 43A, and adjust the parameters using several constraints until the ratio of the spectra of both stars agrees with the ratio as observed by the low energy transmission grating spectrometer (LETGS) of Chandra. This ratio is independent of any errors in the effective area of the LETGS. We find that we can constrain the absolute X-ray spectrum of both stars with better than 5 % accuracy. The best-fit model for both stars is close to a pure hydrogen atmosphere, and we put tight limits to the amount of helium or the thickness of a hydrogen layer in both stars. Our upper limit to the helium abundance in Sirius B is 4 times below the previous detection based on EUVE data. We also find that our results are sensitive to the adopted cut-off in the Lyman pseudo-continuum opacity in Sirius B. We get best agreement with a long wavelength cut-off. White dwarf model atmospheres can be used to derive the effective area of X-ray spectrometers in the lowest energy band. An accuracy of 3-4 % in the absolute effective area can be achieved.Comment: 15 pages, 7 figures, accepted for publication in Astronomy & Astrophysics, main journa

    Searching for dark clouds in the outer galactic plane I -- A statistical approach for identifying extended red(dened) regions in 2MASS

    Get PDF
    [Abridged] Though the exact role of infrared dark clouds in the formation process is still somewhat unclear, they seem to provide useful laboratories to study the very early stages of clustered star formation. Infrared dark clouds have been identified predominantly toward the bright inner parts of the galactic plane. The low background emission makes it more difficult to identify similar objects in mid-infrared absorption in the outer parts. This is unfortunate, because the outer Galaxy represents the only nearby region where we can study effects of different (external) conditions on the star formation process. The aim of this paper is to identify extended red regions in the outer galactic plane based on reddening of stars in the near-infrared. We argue that these regions appear reddened mainly due to extinction caused by molecular clouds and young stellar objects. The work presented here is used as a basis for identifying star forming regions and in particular the very early stages. We use the Mann-Whitney U-test, in combination with a friends-of-friends algorithm, to identify extended reddened regions in the 2MASS all-sky JHK survey. We process the data on a regular grid using two different resolutions, 60" and 90". The two resolutions have been chosen because the stellar surface density varies between the crowded spiral arm regions and the sparsely populated galactic anti-center region. We identify 1320 extended red regions at the higher resolution and 1589 at the lower resolution run. The majority of regions are associated with major molecular cloud complexes, supporting our hypothesis that the reddening is mostly due to foreground clouds and embedded objects.Comment: Accepted for publication in A&A -- 9 pages, 5 figures (+ on-line only tables

    A New Probe of the Molecular Gas in Galaxies: Application to M101

    Get PDF
    Recent studies of nearby spiral galaxies suggest that photodissociation regions (PDRs) are capable of producing much of the observed HI in galaxy disks. In that case, measurements of the HI column density and the far-ultraviolet (FUV) photon flux provide a new probe of the volume density of the local underlying H_2. We develop the method and apply it to the giant Scd spiral M101 (NGC 5457). We find that, after correction for the best-estimate gradient of metallicity in the ISM of M101 and for the extinction of the ultraviolet emission, molecular gas with a narrow range of density from 30-1000 cm^-3 is found near star- forming regions at all radii in the disk of M101 out to a distance of 12' (approximately 26 kpc), close to the photometric limit of R_25 = 13.5'. In this picture, the ISM is virtually all molecular in the inner parts of M101. The strong decrease of the HI column density in the inner disk of the galaxy at R_G < 10 kpc is a consequence of a strong increase in the dust-to-gas ratio there, resulting in an increase of the H_2 formation rate on grains and a corresponding disappearance of hydrogen in its atomic form.Comment: accepted for publication in The Astrophysical Journal (1 August 2000); 29 pages including 20 figures (7 gif); AAS LaTex; contact authors for full resolution versions of gif figure

    On the fidelity of the core mass functions derived from dust column density data

    Full text link
    Aims: We examine the recoverability and completeness limits of the dense core mass functions (CMFs) derived for a molecular cloud using extinction data and a core identification scheme based on two-dimensional thresholding. Methods: We performed simulations where a population of artificial cores was embedded into the variable background extinction field of the Pipe nebula. We extracted the cores from the simulated extinction maps, constructed the CMFs, and compared them to the input CMFs. The simulations were repeated using a variety of extraction parameters and several core populations with differing input mass functions and differing degrees of crowding. Results: The fidelity of the observed CMF depends on the parameters selected for the core extraction algorithm for our background. More importantly, it depends on how crowded the core population is. We find that the observed CMF recovers the true CMF reliably when the mean separation of cores is larger than their mean diameter (f>1). If this condition holds, the derived CMF is accurate and complete above M > 0.8-1.5 Msun, depending on the parameters used for the core extraction. In the simulations, the best fidelity was achieved with the detection threshold of 1 or 2 times the rms-noise of the extinction data, and with the contour level spacings of 3 times the rms-noise. Choosing larger threshold and wider level spacings increases the limiting mass. The simulations show that when f>1.5, the masses of individual cores are recovered with a typical uncertainty of 25-30 %. When f=1 the uncertainty is ~60 %. In very crowded cases where f<1 the core identification algorithm is unable to recover the masses of the cores adequately. For the cores of the Pipe nebula f~2.0 and therefore the use of the method in that region is justified.Comment: 9 pages, 6 figures, accepted for publication in A&

    The White Dwarf Distance to the Globular Cluster 47 Tucanae and its Age

    Get PDF
    We present a new determination of the distance (and age) of the Galactic globular cluster 47 Tucanae (NGC 104) based on the fit of its white dwarf (WD) cooling sequence with the empirical fiducial sequence of local WD with known trigonometric parallax, following the method described in Renzini et al. (1996). Both the cluster and the local WDs were imaged with HST+WFPC2 using the same instrument setup. We obtained an apparent distance modulus of (mM)V=13.27±0.14(m-M)_V=13.27\pm0.14 consistent with previous ground-based determinations and shorter than that found using HIPPARCOS subdwarfs. Coupling our distance determination with a new measure of the apparent magnitude of the main sequence turnoff, based on our HST data, we derive an age of 13±2.513\pm2.5 Gyr.Comment: Accepted for publication on the Astrophysical Journa

    Molecular clouds under the influence of massive stars in the Galactic HII region G353.2+0.9

    Full text link
    The Galactic HII region G353.2+0.9 is excited by the massive open cluster Pismis-24. By analyzing (sub-)mm molecular-line and -continuum we study the detailed morphology of the gas and dust, as well as their physical parameters and their variation across the PDR. We observed various molecules and transitions to derive the physical properties of the molecular gas through line ratios, and both LTE and non-LTE analyses. The physical properties of the gas were derived with a Bayesian approach for the non-LTE analysis. Based on the continuum data at 870 micron, we derived the dust mass and the column density of H2, and thus the molecular abundances. The total mass of the gas in the region is ca. 2000 Mo, while that of the dust is ca. 21 Mo. A velocity gradient in the region suggests that the expansion of the ionized gas is pushing the molecular gas away from the observer. We unambiguously identify the ionization front, at the location of which we detect an increase in gas density and temperature. We find at least 14 clumps at different positions and LSR velocities. We derive kinetic temperatures in the ranges 11-45 K (CS) and 20-45 K (CN). The H2 number density is typically around 1e5 cm^-3 from CS and few 1e5 cm^-3 from CN, with maxima above 1e6 cm^-3. The abundances of the molecules observed vary across the region, and appear to be higher in regions further away from the ionization front.Comment: 14 pages, 11 figures. Accepted for publication in Astronomy and Astrophysic

    Far-Ultraviolet Color Gradients in Early-Type Galaxies

    Get PDF
    We discuss far-UV (1500 A) surface photometry and FUV-B color profiles for 8 E/S0 galaxies from images taken with the Ultraviolet Imaging Telescope, primarily during the Astro-2 mission. In three cases, the FUV radial profiles are more consistent with an exponential than a de Vaucouleurs function, but there is no other evidence for the presence of a disk or of young, massive stars. In all cases except M32 the FUV-B color becomes redder at larger radii. There is a wide range of internal radial FUV-B color gradients. However, we find no correlation between the FUV-B color gradients and internal metallicity gradients based on Mg absorption features. We conclude that metallicity is not the sole parameter controlling the "UV upturn component" in old populations.Comment: 11 pages; tar.gz file includes LaTeX text file, 3 PostScript figures. Paper to be published in ApJ Letter

    The Hubble Legacy Archive NICMOS Grism Data

    Full text link
    The Hubble Legacy Archive (HLA) aims to create calibrated science data from the Hubble Space Telescope archive and make them accessible via user-friendly and Virtual Observatory (VO) compatible interfaces. It is a collaboration between the Space Telescope Science Institute (STScI), the Canadian Astronomy Data Centre (CADC) and the Space Telescope - European Coordinating Facility (ST-ECF). Data produced by the Hubble Space Telescope (HST) instruments with slitless spectroscopy modes are among the most difficult to extract and exploit. As part of the HLA project, the ST-ECF aims to provide calibrated spectra for objects observed with these HST slitless modes. In this paper, we present the HLA NICMOS G141 grism spectra. We describe in detail the calibration, data reduction and spectrum extraction methods used to produce the extracted spectra. The quality of the extracted spectra and associated direct images is demonstrated through comparison with near-IR imaging catalogues and existing near-IR spectroscopy. The output data products and their associated metadata are publicly available through a web form at http://hla.stecf.org and via VO interfaces. In total, 2470 spectra of 1923 unique targets are included in the current release.Comment: 18 pages, 21 figures, accepted for publication in Astronomy & Astrophysic

    Evidence for the Large-Scale Dissociation of Molecular Gas in the Inner Spiral Arms of M81

    Get PDF
    We compare the detailed distributions of HI, H alpha, and 150 nm far-UV continuum emission in the spiral arms of M81 at a resolution of 9" (linear resolution 150 pc at 3.7 Mpc distance). The bright H alpha emission peaks are always associated with peaks in the far-UV emission. The converse is not always true; there are many regions of far-UV emission with little corresponding H alpha. The HI and the far-UV are always closely associated, in the sense that the HI is often brightest around the edges of the far-UV emission. The effects of extinction on the morphology are small, even in the far-UV. Extensive far-UV emission, often with little corresponding H alpha, indicates the presence of many ``B-stars'', which produce mostly non-ionizing UV photons. These far-UV photons dissociate a small fraction of an extensive layer of H_2 into HI. The observed morphology can be understood if ``chimneys'' are common in the spiral arms of M81, where holes are blown out of the galactic disk, exposing the bright HII regions and the corresponding far-UV associated with vigorous star formation. These ``naked'' star-forming regions show little obscuration. H_2 is turned into HI by UV photons impinging on the interior surfaces of these chimneys. The intensity of the far-UV radiation measured by UIT can dissociate the underlying H_2 with a typical density of ~10 H nucleii cm**-3 to produce the observed amount of HI in the spiral arms of M81. Except for thin surface layers locally heated in these photo-dissociation regions close to the far-UV sources, the bulk of the molecular gas in the inner disk of M81 is apparently too cold to produce much 12CO(1-0) emission.Comment: 12 pages, Latex. 8 postscript files. Better quality versions of the figures available from ftp://star.herts.ac.uk/pub/Knapen/m81uv . Accepted, Ap
    corecore